Carlos Vitor de Alencar Carvalho

Simulação de transporte e deposição de sedimentos siliciclásticos em ambientes de plataforma, talude e bacia

TESE DE DOUTORADO

Tese apresentada ao Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil da PUC-Rio como parte dos requisitos parciais para obtenção do título de Doutor em Engenharia Civil. Área de Concentração: Estruturas.

Orientador: Luiz Fernando Campos Ramos Martha

Rio de Janeiro Dezembro de 2002

Carlos Vitor de Alencar Carvalho

Simulação de transporte e deposição de sedimentos siliciclásticos em ambientes de plataforma, talude e bacia

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Luiz Fernando Campos Ramos Martha Orientador Departamento de Engenharia Civil – PUC-Rio

> Prof. Jobel Lourenço Pinheiro Moreira Petrobrás

> > Prof. Edison José Milani Petrobrás

> > Prof. Chang Hung Kiang UNESP

Prof. Eurípedes do Amaral Vargas Jr. Departamento de Engenharia Civil – PUC-Rio

Prof. Paulo Cezar Pinto Carvalho Departamento de Engenharia Civil – PUC-Rio

> **Prof. Ney Augusto Dumont** Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 06 de dezembro de 2002

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Carlos Vitor de Alencar Carvalho

Graduou-se em Engenharia Civil na UFPa (Universidade Federal do Pará) em 1995. Fez o curso de Mestrado em Estruturas pelo Departamento de Engenharia Civil no período de 1996 a 1998.

Ficha Catalográfica

Carvalho, Carlos Vitor de Alencar

Simulação de transporte e deposição de sedimentos siliciclásticos em ambientes de plataforma, talude e bacia / Carlos Vitor de Alencar Carvalho ; orientador: Luiz Fernando Campos Ramos Martha. – Rio de Janeiro : PUC, Departamento de Engenharia Civil, 2002.

[18], 113 f. : il. ; 30 cm

Tese (Doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia civil – Teses. 2. Computação gráfica. 3. Geologia. 4. Simulação numérica. 5. Sedimentologia. 6. Estratigrafia. 7. Dinâmica dos fluídos. I. Martha, Luiz Fernando Campos Ramos. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

Para meus pais, Francisco e Conceição, e para minha querida esposa Janaina.

Agradecimentos

A Deus, meu Criador e perene Inspiração.

Ao meu orientador, Luiz Fernando Martha, pela orientação, pelo incentivo constante, pela dedicação, pelos conhecimentos transmitidos durante os cursos de mestrado e doutorado, pela confiança depositada em meu trabalho e principalmente pela oportunidade de estudar e desenvolver esta tese.

Ao geólogo do CENPES/PETROBRAS José Eduardo Faccion, pela grande colaboração neste trabalho. Os conhecimentos e experiências sobre geologia transmitida ao longo do desenvolvimento desta pesquisa foram de fundamental importância para o desenvolvimento deste trabalho e para aumentar os meus conhecimentos sobre geologia.

Ao professor Eurípedes do Amaral Vargas Jr. pelas discussões de idéias contidas neste trabalho principalmente sobre a análise numérica implementada neste trabalho.

Ao professor Jean-Jacques Royer da Nancy School of Geology (Computer Science Department), pelas discussões sobre os algoritmos de trajetórias de fluxos.

Aos professores da UFPa, Remo Magalhães de Souza, Antônio Malaquias Pereira, Ronaldson Mendes Carneiro e José Perilo da Rosa Neto pelos ensinamentos e incentivos durante a graduação.

A minha esposa Janaina Veiga Carvalho pela compreensão, força, apoio, ajuda e incentivo durante todo o tempo.

Ao meu pai Francisco Carvalho e minha mãe Conceição Carvalho a minha eterna gratidão pelo apoio e incentivo que me deram para desenvolver este trabalho e ao longo de toda a minha vida.

Aos funcionários de Departamento de Engenharia Civil e do Tecgraf principalmente à Ana Roxo, Yedda Claudinei e Elivelton pelo apoio.

Aos amigos do Tecgraf/PUC-Rio e do Departamento de Engenharia Civil da PUC-Rio.

Ao laboratório Tecgraf pela infra-estrutura e pelo ambiente que permitiram o desenvolvimento deste trabalho.

Ao CNPq e ao Convênio Tecgraf – CENPES/PETROBRAS pelo apoio financeiro ao longo do curso.

Resumo

Carvalho, Carlos Vitor de Alencar; **Simulação de transporte e deposição de sedimentos siliciclásticos em ambientes de plataforma, talude e bacia**. Rio de Janeiro, 2002, 131p. Tese de Doutorado – Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

A geologia sedimentar trata do estudo dos processos físicos, químicos e biológicos atuantes na superfície da Terra não só no presente como também ao longo de toda a sua evolução. Em função disso, ela pode ser aplicada em diversos campos, como, por exemplo, no estudo da formação de combustíveis fósseis. Um dos focos principais da geologia sedimentar reside em determinar os parâmetros e processos pelos quais as bacias sedimentares são preenchidas. Neste trabalho é apresentado o desenvolvimento de um simulador numérico de sedimentação tridimensional, chamado de STENO, com ênfase nos processos deposicionais em ambientes de plataforma, talude e bacia. O algoritmo do simulador é baseado nos conceitos quantitativos formulados pela Estratigrafia de Següências, como mecanismos de controle primário da arquitetura dos estratos sedimentares, e em uma análise numérica para simulação do fluxo bidimensional de um fluido incompressível, em regime permanente, não viscoso, em função da batimetria da região a ser modelada através de um grid regular definido pelo usuário. O campo de velocidades, calculado a partir das velocidades de aporte de sedimentos e das velocidades de corrente, é utilizado para determinar a direção de escoamento dos sedimentos (linhas de correntes). A abordagem dada pelo algoritmo do STENO é inovadora em termos dos algoritmos existentes, pois considera que os sedimentos são transportados hidrodinamicamente, isto é, na direção x e y eles são transportados seguindo as linhas de corrente e na direção z a movimentação/deposição dos sedimentos é controlada pelo ângulo de estabilidade de cada fração litológica (areia, silte ou argila) e pelo volume do espaço disponível para acomodação em cada uma das colunas formadas a partir das células do modelo discretizado.

Palavras-chave

Computação gráfica, geologia, simulação numérica.

Abstract

Carvalho, Carlos Vitor de Alencar; Simulation of transport and deposition of siliciclastic sediments in plataform, slope, and basin environments. Rio de Janeiro, 2002, 131p. Doctor's Thesis – Civil Engineering Departament, Pontifical Catholic University of Rio de Janeiro.

Sedimentary Geology deals with the study of the physical, chemical and biological processes operating in the surface of the Earth, not only in the present days, but also along all History. Therefore, it can be applied in miscellaneous fields, as, for example, in the study of fossils fuels formation. One of the main focus of sedimentary geology inhabits in determining the parameters and processes for which the sedimentary basins are filled. In this work the development of a numerical simulator of sedimentation 3D, called STENO is presented, with emphasises the depositary processes in platform, slope, and basin environments. The algorithm of the simulator is based on the formulated quantitative concepts for Sequence Stratigraphy, as mechanisms of primary control of the architecture of sedimentary stratus, and in a numerical analysis for simulation of the 2D steady-state flow of a incompressible fluid, not viscous, in function of the bathymetry of the region represented by one regular grid defined by the user. The velocity field calculated from boundary conditions (sediment aport velocity and for field stream velocity) it is used to determine the direction of draining of the sediments (streamlines). The algorithm of STENO is innovative because it considers that the sediments are carried hydrodynamicsly, that is, in direction x and y they are carried following streamlines and in direction z. The movement/deposition of sediments is controlled by an angle of stability of each lithology fraction (sand, silte or clay) and by the volume of the available space for accommodation in each one of the columns formed in the cells of the discretized model.

Keywords

Computer graphics, geology, numerical simulation.

Sumário

1.	Introdução	19
	 1.1. Histórico da simulação numerica em geologia (Modelagem Direta) 1.2. Características gerais dos algoritmos existentes 1.2.1. Algoritmos de Difusão e Difusão com Advecção 1.2.2. Algoritmos de Fluxo 1.2.3. Algoritmos Empíricos 1.2.4. Algoritmos Geométricos 1.3. Objetivos 1.4. Organização da Tese 	21 28 29 29 30 31 32
2.	Processos geológicos utilizados na simulação 2.1. Curvas Eustáticas 2.2. Subsidência 2.3. Aporte de Sedimentos 2.3.1. Método	33 33 38 39 40
3.	Transporte e deposição de sedimentos 3.1. Modelo Digital de Terreno (MDT) 3.2. Princípios Gerais dos Movimentos dos fluidos 3.2.1. Formulação 3.2.2. Equação do Movimento 3.2.3. Equação da Continuidade 3.2.4. Discretização 3.3. Linhas de Correntes – Trajetórias do fluxo 3.4. Deposição dos sedimentos 3.5. Compactação	44 45 51 53 55 56 64 72 75
4.	Sistema Computacional 4.1. Sistema STENO 4.2. Extração das Superfícies	78 78 87
5.	Exemplos 5.1. Exemplo 1 5.2. Exemplo 2 5.3. Exemplo 3 5.4. Exemplo 4	96 96 103 110 118
6.	Conclusões e Sugestões 6.1. Sugestões para trabalhos futuros	125 126
7.	Referências Bibliografias	128

Lista de Figuras

Figura 1.1 – Tipos de modelos geológicos e processos envolvidos	19
Figura 1.2 – Classificação dos Programas de Simulação Numérica	em
Geologia quanto à direção da Modelagem	21
Figura 1.3 – Os Ciclos Orbitais de Milankovitch	22
Figura 1.4 – Simulação de Sedimentação Siliciclástica com o SEDPAK	23
Figura 1.5 – Simulação Estratigráfica baseada na Equação da Difus	ão.
Notar a reduzida escala vertical e o pequeno intervalo de tempo	
simulado	24
Figura 1.6 – Simulação em Mapa produzida pelo SEDSIM (dir)
confrontada com os dados reais (esq). A captura de tela abaixo o	los
mapas mostra os parâmetros de entrada	25
Figura 1.7 – Modelo geológico sintético produzido com o simula	dor
FAULT DYNAMICS	25
Figura 1.8 - Seções sintéticas produzidas pelo simulador de algorit	mo
empírico de Lawrence et al.	26
Figura 1.9 – Seção geológica sintética gerada por algoritmo misto,	
baseado na Equação da Difusão e em equações da geomorfologia	27
Figura 1.10 – Blocos-diagrama gerados pelo simulador tridimensio	nal
DIONISOS. O simulador está baseado nas Equações de Difusão (pla	ano
XZ) e Advecção (plano XY)	27
Figura 2.1 – Processos responsáveis para formação de bacias	
sedimentares	33
Figura 2.2 – Espaço disponível para acomodação gerado pela inter-	
relação entre a eustasia (subida/queda) e a tectônica	
(soerguimento/subsidência).	34
Figura 2.3 – Definições de Eustasia, nível do mar relativo e profundidad	е
da lâmina d'água.	34
Figura 2.4 – Escala Geológica de tempo de <i>Harland.</i>	36
Figura 2.5 – Curva de Haq disponível no STENO	36
Figura 2.6 – Diálogo do STENO: definição das curvas de baixas e altas	
freqüências	37
Figura 2.7 – Efeito da subsidência passo a passo	38

Figura 2.8 – Região a ser modelada mostrando pontos onde se conhec	e a
variação da subsidência (pontos em vermelho são conhecidos, pontos	da
malha são calculados)	39
Figura 2.9 – Aporte de Sedimentos	40
Figura 3.1 – Algoritmo utilizado no STENO, proposto neste trabalho	44
Figura 3.2 – Região que será modelada e pontos em vermelho, com	
valores da subsidência ou pontos do embasamento conhecidos	45
Figura 3.3 – Curvas de subsidência disponíveis no STENO	48
Figura 3.4 – Grid de 35x35 células gerado pelo Método do Inverso do	
Quadrado da Distância	49
Figura 3.5 – Grid de 45x45 células gerado pelo Método do Inverso do	
Quadrado da Distância	50
Figura 3.6 – Grid de 40x40 células gerado pelo Método do Inverso do	
Quadrado da Distância	50
Figura 3.7 – Área elementar para a dedução das equações que govern	am
os movimentos dos fluidos	52
Figura 3.8 – Elemento de fluido se deslocando com o escoamento	54
Figura 3.9 – Área elementar para dedução da equação da	
continuidade	56
Figura 3.10 – Esquema dos pontos utilizados para discretização das	
equações	59
Figura 3.11 – Modelo discretizado mostrando as velocidades	
de contorno	60
Figura 3.12 – Diagrama mostrando o tratamento das condições de	
contorno das células que estão na borda do modelo discretizado	61
Figura 3.13 – Diagrama mostrando o tratamento das condições de	
contorno das células que estão nos cantos do modelo discretizado	62
Figura 3.14 – Modelo mostrando uma área plana com velocidades	
constantes nas bordas esquerda e direita	63
Figura 3.15 – Campo de velocidades obtido após a análise	63
Figura 3.16 – Modelo analisado com batimetria variada	63
Figura 3.17 – Campo de velocidades obtido após a análise do modelo	da
figura 3.16	64

Figura 3.18 – Visualização de uma streamline que foi iniciada a partir da	а
borda por onde os sedimentos entraram na superfície da simulação	65
Figura 3.19 – Coordenadas dos vértices utilizadas para a interpolação	
baricêntrica	67
Figura 3.20 – Visualização das <i>streamlines</i> . Número de <i>streamlines</i> é	
igual ao número de células na direção <i>y</i> menos um	67
Figura 3.21 – Algoritmo para construção da streamline	68
Figura 3.22 – Modelo utilizado na simulação mostrando a batimetria.	
Dimensões: 100km x 300 km	68
Figura 3.23 – Mesmo modelo da figura anterior	
mostrando uma <i>streamline</i>	69
Figura 3.24 – Modelo com sua batimetria.	
Dimensões: 100 km x 300 km	69
Figura 3.25 – Mesmo modelo da figura anterior	
mostrando as <i>streamlines</i>	70
Figura 3.26 – Mesmo modelo da figura anterior mostrando as streamline	es
e a batimetria	70
Figura 3.27 – Modelo mostrando as <i>streamlines</i> e a batimetria.	
Dimensões: 100 km x 300 km	71
Figura 3.28 – Mesmo modelo da figura anterior mostrando as streamline	es
e a batimetria	71
Figura 3.29 – Streamlines da figura 3.16 e 3.17	72
Figura 3.30 – Sentido utilizado para efetuar o	
processo de deposição	73
Figura 3.31 – Vista superior da <i>streamline</i>	73
Figura 3.32 – Vista lateral da streamline da figura 3.31	74
Figura 3.33 – Distância z entre os pontos no plaon zx	74
Figura 3.34 – Distância entre <i>d</i> os pontos no plano <i>xy</i>	74
Figura 3.35 – Modelo analisado mostrando a batimetria e uma streamlin	ıе
do fluxo	75
Figura 3.36 – Modelo mostrando os sedimentos depositados ao longo o	la
streamline	75
Figura 3.37 – Curva de porosidade versus profundidade e curva de	
complemento de porosidade (% de matriz) versus profundidade	77

Figura 4.1 – Estrutura global das classes implementadas no STENO	79
Figura 4.2 – Estrutura interna da classe <i>stenoGrid</i>	80
Figura 4.3 – Estrutura interna da classe <i>StenoCell</i>	80
Figura 4.4 – Estrutura interna da classe <i>StenoColumns</i>	81
Figura 4.5 – Diálogo Principal do STENO	82
Figura 4.6 – Diálogo utilizado para definir a superfície inicial	
(embasamento)	83
Figura 4.7 – Diálogo onde o usuário especifica os parâmetros iniciais	83
Figura 4.8 – Diálogo utilizado para definir a variação	
da subsidência	83
Figura 4.9 – Diálogo onde o usuário define a curva eustática	84
Figura 4.10 – Curva de Haq, mostrando o tempo inicial (linha verde) o	
tempo final (linha vermelha) e o tempo atual da simulação (linha azul).	А
figura da esquerda mostra de forma detalhada o trecho da curva Haq c	lue
será utilizado na simulação	84
Figura 4.11 – Tabela onde o usuário define o aporte de sedimentos	85
Figura 4.12 – Tabela que contém as informações sobre as descargas	
volumétricas, máximas e mínimas, de alguns rios	85
Figura 4.13 – Borda continental do tipo 1	86
Figura 4.14 – Borda continental do tipo 2	86
Figura 4.15 – Tabela com as velocidades de correntes marítimas	87
Figura 4.16 – Sedimentos depositados no grid armazenados	
em colunas	88
Figura 4.17 – Exemplo esquemático mostrando como as colunas são	
montadas	89
Figura 4.18 – Topo das colunas após a escolha da idade	
pelo usuário	89
Figura 4.19 – Malha de elevação da superfície de idade definida pelo	
usuário	90
Figura 4.20 – Extensão da malha de elevação da superfície até as boro	das
da malha de simulação	90
Figura 4.21 – Cálculo do ponto de interseção entre pontos calculados r	າດ
passo anterior	91

Figura 4.22 – Malha gerada após o cálculo do ponto de interseção ent	tre
pontos calculados no passo anterior	91
Figura 4.23 – Pontos calculados após o calculo dos valores da altura	nos
vértices da malha da simulação	92
Figura 4.24 – Pontos calculados após o calculo dos valores da altura	nos
vértices da malha da simulação	92
Figura 4.25 – Visualização tridimensional, com as células do grid em	
forma de colunas, de uma idade definida pelo usuário	93
Figura 4.26 – Superfície suavizada com o algoritmo mostrado	94
Figura 4.27 – Visualização tridimensional, com as células do grid em	
forma de colunas, de uma idade definida pelo usuário	94
Figura 4.28 – Superfície suavizada com o algoritmo mostrado	95
Figura 5.1 – Conjunto de parasseqüências, de acordo com Van Wago	ner
et al (1998)	97
Figura 5.2 – Trecho utilizado para fazer a simulação das parasseqüên	cias,
correspondente ao TST	97
Figura 5.3 – Tratos de sistemas associados à curva eustática	98
Figura 5.4 – Passo um, início da simulação	99
Figura 5.5 – Passo dois, seqüência retrogradacional	100
Figura 5.6 – Passo três, seqüência retrogradacional	100
Figura 5.7 – Passo quatro, seqüência retrogradacional com alguma	
característica de agradação	101
Figura 5.8 – Passo cinco, agradacional	101
Figura 5.9 – Passo seis, início de seqüências progradacional	102
Figura 5.10 – Passo sete, seqüência progradacional	102
Figura 5.11 – Passo oito, seqüência progradacional	103
Figura 5.12 – Aspecto final da seção depois da simulação	103
Figura 5.13 – Parâmetros iniciais utilizados na simulação	104
Figura 5.14 – Definição da curva de subsidência	104
Figura 5.15 – Visualização dos pontos onde se conhece a variação da	1
subsidência	105
Figura 5.16 – Função de aporte utilizada nesta simulação	105
Figura 5.17 – Velocidades de contorno utilizadas para determinar o	
campo de velocidades e as <i>streamlines</i>	106

Figura 5.18 – Passo um da simulação	106
Figura 5.19 – Passo dois da simulação	107
Figura 5.20 – Passo três da simulação	107
Figura 5.21 – Passo quatro da simulação	108
Figura 5.22 – Passo cinco da simulação	108
Figura 5.23 – Passo seis da simulação	109
Figura 5.24 – Passo sete da simulação	109
Figura 5.25 – Visualização final da bacia após a simulação	110
Figura 5.26 – Parâmetros iniciais utilizados na simulação	110
Figura 5.27 – Aporte de sedimentos utilizado no exemplo 3	111
Figura 5.28 – Primeiro passo da simulação	111
Figura 5.29 – Streamlines da análise do primeiro passo	
da simulação	112
Figura 5.30 – Horizonte geológico do primeiro passo da simulação	112
Figura 5.31 – Segundo passo da simulação	113
Figura 5.32 – Streamlines do segundo passo da simulação	113
Figura 5.33 – Horizonte geológico do segundo passo da simulação	114
Figura 5.34 – Terceiro passo da simulação	114
Figura 5.35 – Streamlines do terceiro passo da simulação	115
Figura 5.36 – Horizonte geológico do terceiro passo da simulação	115
Figura 5.37 – Quarto passo da simulação	116
Figura 5.38 – <i>Streamlines</i> do quarto passo da simulação	116
Figura 5.39 – Horizonte geológico do quarto passo da simulação	117
Figura 5.40 – Quinto passo da simulação	117
Figura 5.41 – Streamlines do quinto passo da simulação	118
Figura 5.42 – Horizonte geológico do quinto passo da simulação	118
Figura 5.43 – Batimetria e características do exemplo 4	119
Figura 5.44 – Primeiro passo da simulação	120
Figura 5.45 – Linhas de correntes do primeiro passo da simulação	120
Figura 5.46 – Segundo passo da simulação	121
Figura 5.47 – Terceiro passo da simulação	121
Figura 5.48 – Quarto passo da simulação	122
Figura 5.49 – Quinto passo da simulação	122
Figura 5.50 – Sexto passo da simulação	123

Figura 5.51 – Sétimo passo da simulação	123
Figura 5.52 – Oitavo passo da simulação	124
Figura 6.1 – Algoritmo proposto e implementado neste trabalho	125

Lista de Tabelas

Tabela 1.1 - Vantagens e Desvantagens dos algoritmos numéricos para	1
modelagem direta em geologia	30
Tabela 2.1 – Exemplos de Concentrações Parciais	
em Sistemas Costeiro	41
Tabela 2.2 – Descarga Sedimentar Total	41
Tabela 2.3 – Descarga Sedimentar em Sistemas Costeiros (adaptado d	е
Hansen & Poulain, 1996 e Harris & Coleman, 1998)	42
Tabela 2.4 – Descarga Sedimentar de rios significativos (adaptado de	
Hansen & Poulain, 1996 e Harris & Coleman, 1998)	42
Tabela 2.5 – Composição percentual de Sedimentos	43
Tabela 3.1 – Tabela utilizada para montar uma curva de subsidência da	I
Bacia de Campos	48

Caracteres Romanos

a - aceleração do fluido

- b[i] coeficientes baricêntricos
- dA área em que o fluido está atuando
- dec o fator de decaimento

 D_f – valor da profundidade correspondente a idade imediatamente acima da idade atual da simulação

 D_i – valor da profundidade correspondente a idade imediatamente abaixo da idade atual da simulação

- g é a aceleração da gravidade
- h_{ii} distância entre o nó (j) do grid e o ponto da amostra i
- h altura do fluido (batimetria)
- Hs altura de sedimentos de uma camada
- I_{f} valor da idade imediatamente acima da idade atual da simulação
- I_i valor idade imediatamente abaixo da idade atual da simulação
- n número de amostras utilizadas para interpolar cada nó do grid
- Q_{entra} vazão que entra na área elementar
- Q_{sai} vazão que sai da área elementar
- R região de análise
- u componente x do vetor velocidade
- v componente y do vetor velocidade
- $v_x(x, y)$ componente x do vetor velocidade
- $v_{v}(x, y)$ componente y do vetor velocidade
- \vec{v} vetor velocidade
- w componente z do vetor velocidade
- Zt profundidades do topo
- Zb profundidade da base
- z(x, y) valor interpolado para o nó do grid

 z_i – valor da subsidência da amostra *i*

Caracteres Gregos

- β expoente de ponderação
- δR fronteira de região de análise
- Δt intervalo de tempo
- Δx distância entre as células do grid na direção x
- Δy distância entre as células do grid na direção y
- $\phi\,$ potencial de velocidade
- γ peso específico
- η –coordenada paramétrica
- ρ massa especifica do fluido
- ho 0 a porosidade inicial
- ξ coordenada paramétrica